Закон сохранения скоростей в механике

6.5. Сложение скоростей в релятивистской механике

Мы говорили, что скорость света — максимально возможная скорость распространения сигнала. Но что будет, если свет испускается движущимся источником в направлении его скорости V ? Согласно закону сложения скоростей, следующему из преобразований Галилея, скорость света должна быть равна c + V. Но в теории относительности это невозможно. Посмотрим, какой закон сложения скоростей следует из преобразований Лоренца. Для этого запишем их для бесконечно малых величин:

По определению скорости ее компоненты в системе отсчета K находятся как отношения соответствующих перемещений к временным интервалам:

Аналогично определяется скорость объекта в движущейся системе отсчета K’, только пространственные расстояния и временные интервалы надо взять относительно этой системы:

Следовательно, разделив выражение dx на выражение dt, получим:

Разделив числитель и знаменатель на dt’, находим связь x-компонент скоростей в разных системах отсчета, которая отличается от галилеевского правила сложения скоростей:

Кроме того, в отличие от классической физики, меняются и компоненты скоростей, ортогональные направлению движения. Аналогичные вычисления для других компонент скоростей дают:

Таким образом, получены формулы для преобразования скоростей в релятивистской механике. Формулы обратного преобразования получаются при замене штрихованных величин на нештрихованные и обратно и заменой V на –V.

Теперь мы можем ответить на вопрос, поставленный в начале данного раздела. Пусть в точке 0′ движущейся системы отсчета K’ установлен лазер, посылающий импульс света в положительном направлении оси 0’х’. Какой будет скорость импульса для неподвижного наблюдателя в системе отсчета К? В этом случае скорость светового импульса в системе отсчета К’ имеет компоненты

Применяя закон релятивистского сложения скоростей, находим для компонент скорости импульса относительно неподвижной системы К :

Мы получаем, что скорость светового импульса и в неподвижной системе отсчета, относительно которой источник света движется, равна

Тот же результат получится при любом направлении распространения импульса. Это естественно, так как независимость скорости света от движения источника и наблюдателя заложена в одном из постулатов теории относительности. Релятивистский закон сложения скоростей — следствие этого постулата.

Действительно, когда скорость движения подвижной системы отсчета V <<c, преобразования Лоренца переходят в преобразования Галилея, мы получаем обычный закон сложения скоростей

При этом ход течения времени и длина линейки будут одинаковы в обеих системах отсчета. Таким образом, законы классической механики применимы, если скорости объектов много меньше скорости света. Теория относительности не зачеркнула достижения классической физики, она установила рамки их справедливости.

Пример. Тело со скоростью v0 налетает перпендикулярно на стенку, двигающуюся ему навстречу со скоростью v. Пользуясь формулами для релятивистского сложения скоростей, найдем скорость v1 тела после отскока. Удар абсолютно упругий, масса стенки намного больше массы тела.

Воспользуемся формулами, выражающими релятивистский закон сложения скоростей.

Направим ось х вдоль начальной скорости тела v0 и свяжем систему отсчета K’ со стенкой. Тогда vx = v0 и V = –v. В системе отсчета, связанной со стенкой, начальная скорость v’0 тела равна

Поскольку стенку можно считать бесконечно массивной, по закону сохранения энергии после упругого удара тело отскочит в обратном направлении с тем же (относительно стенки) абсолютным значением скорости:

Вернемся теперь назад в лабораторную систему отсчета К. Подставляя в релятивистский закон сложения скоростей v’1 вместо v’x и учитывая опять же V = –v, находим после преобразований:

Проанализируем теперь предельные случаи.

Если скорости тела и стенки малы (v0 << с, v << с), то можно пренебречь всеми членами, где эти скорости и их произведение делятся на скорость света. Получаем тогда из найденной формулы результат классической механики

Скорость шара после отскока увеличивается на удвоенную скорость стенки; направлена она, естественно, противоположно начальной. Ясно, что в релятивистском случае этот результат не годится. В частности, при v0 = v = с/3 из него следует, что скорость тела после отскока будет равна v1 = –с, чего не может быть.

Пусть теперь на стенку налетает тело, двигающееся со скоростью света (например, лазерный луч отражается от двигающегося зеркала). Подставляя v0 = с в найденное соотношение, получаем

Иными словами, скорость лазерного луча изменила направление, но не свою абсолютную величину, как и должно быть.

Рассмотрим теперь случай, когда стенка движется с релятивистской скоростью. В этом случае найденное соотношение дает нам

Тело после отскока также будет двигаться со скоростью, близкой к скорости света.

Наконец, подставим в найденное соотношение значения v0 = v = с/3 :

В отличие от классической механики, теория относительности дает для скорости после отскока значение, меньшее скорости света.

Напоследок посмотрим, что случится, если стенка удаляется от тела с той же скоростью (v = –v0). Имеем в этом случае:

Как и в классической механике, тело стенку не догонит, и его скорость не изменится.

Закон сохранения скоростей в механике

Классическая механика ответит на этот вопрос просто: в соответствии с преобразованиями Галилея скорость тела относительно Земли будет:

Оценим скорость тела, используя преобразования Лоренца.

Внутри корабля перемещение dx‘ за время dt‘ равно dx‘ = υ’ dt‘ .
Найдем dx и dt с точки зрения наблюдателя на Земле, исходя из преобразований Лоренца:

Подсчитаем скорость тела в нашем примере в соответствии с полученной формулой:

Полученный результат не противоречит положению СТО о предельности скорости света. При медленных движениях, когда υ

§ 10. Закон сложения скоростей

Преобразования Лоренца дают нам возможность вычислять изменение координат события при переходе от одной системы отсчета к другой. Поставим теперь вопрос о том, как при изменении системы отсчета будет меняться скорость одного и того же тела?

В классической механике, как известно, скорость тела просто складывается со скоростью системы отсчета. Сейчас мы убедимся, что в теории относительности скорость преобразуется по более сложному закону.

Мы снова ограничимся рассмотрением одномерного случая. Пусть две системы отсчета S и S` «наблюдают» за движением некоторого тела, которое перемещается равномерно и прямолинейно параллельно осям х и х` обеих систем отсчета. Пусть скорость тела, измеренная системой отсчета S, есть и; скорость того же тела, измеренную системой S`, обозначим через и` . Буквой v будем по-прежнему обозначать скорость системы S` относительно S.

Допустим, что с нашим телом происходят два события, координаты которых в системе S суть x1,t1, и х2, t2. Координаты тех же событий в системе S` пусть будут х`1, t`1; x`2, t`2. Но скорость тела есть отнощение пройденного телом пути к соответствующему промежутку времени; поэтому, чтобы найти скорость тела в той и другой системах отсчета, нужно разность пространственных координат обоих событий разделить на разность временных координат

которую можно, как всегда, получить из релятивистской, если скорость света считать бесконечной. Ту же формулу можно записать в виде

Пусть система отсчета S` движется относительно системы отсчета S со скоростью v = 150 000 км/сек. Пусть в том же направлении движется тело, причем измерение его скорости системой отсчета S` дает результат u =200 000 км/сек. Если теперь измерить скорость того же тела с помощью системы отсчета S то получится u=262 500 км/сек.


Следует подчеркнуть, что полученная нами формула предназначена именно для пересчета величины скорости одного и того же тела от одной системы отсчета к другой, а отнюдь не для вычисления «скорости сближения» или «удаления» двух тел. Если мы из одной и той же системы отсчета наблюдаем два движущихся навстречу друг другу тела, причем скорость одного тела равна 150 000 км/сек, а второго — 200 000 км/сек, то расстояние между этими телами каждую секунду будет уменьшаться на 350 000 км. Теория относительности не упраздняет законов арифметики.

Читатель уже понял, конечно, что, применяя эту формулу к скоростям, не превосходящим скорость света, мы снова получим скорость, не превосходящую с. Не представляет никакого труда доказать это утверждение вполне строго. Действительно, легко проверить.

Для небольших, «обычных» скоростей обе формулы— релятивистская и классическая — дают практически совпадающие результаты, в чем читатель при желании легко сможет убедиться. Но при скоростях, близких к скорости света, разница становится весьма ощутимой. Так, если v=150 000 км/сек, u`=200 000 км/сек, то вместо классического результата u = 350 000 км/сек релятивистская формула дает u = 262 500 км/сек. Согласно смыслу формулы сложения скоростей, этот результат означает следующее.

Пусть система отсчета S` движется относительно системы отсчета S со скоростью v = 150 000 км/сек. Пусть в том же направлении движется тело, причем измерение его скорости системой отсчета S` дает результат u` =200 000 км/сек. Если теперь измерить скорость того же тела с помощью системы отсчета S то получится u=262 500 км/сек.


Следует подчеркнуть, что полученная нами формула предназначена именно для пересчета величины скорости одного и того же тела от одной системы отсчета к другой, а отнюдь не для вычисления «скорости сближения» или «удаления» двух тел. Если мы из одной и той же системы отсчета наблюдаем два движущихся навстречу друг другу тела, причем скорость одного тела равна 150 000 км/сек, а второго — 200 000 км/сек, то расстояние между этими телами каждую секунду будет уменьшаться на 350 000 км. Теория относительности не упраздняет законов арифметики.

Читатель уже понял, конечно, что, применяя эту формулу к скоростям, не превосходящим скорость света, мы снова получим скорость, не превосходящую с. Не представляет никакого труда доказать это утверждение вполне строго. Действительно, легко проверить, что имеет место равенство

Так как и` ≤ с и v 2 /c 2 )
Мы получим тангенс угла наклона луча к оси z`, если разделим и`х на и`z:
tg α = и`х / и`z = (v/c) / √(1 — v 2 /c 2 )

Если скорость v не очень велика, то можно применить известную нам приближенную формулу, с помощью которой получаем
tg α = v/c + 1/2*v 2 /c 2 .
Первое слагаемое представляет собой хорошо известный классический результат; второе слагаемое есть релятивистская поправка.

Орбитальная скорость Земли равна примерно 30 км/сек, так что (v/c) = 10 -4 . Для малых углов тангенс равен самому углу, измеренному в радианах; так как радиан содержит круглым счетом 200 000 угловых секунд, то получаем для угла аберрации:
α = 20°
Релятивистская поправка в 20 000 000 раз меньше и лежит далеко за пределами точности астрономических измерений. Вследствие аберрации звезды описывают ежегодно на небе эллипсы с большой полуосью в 20″.

Когда мы смотрим на движущееся тело, мы видим его не там, где оно находится в данный момент, а там, где оно было несколько раньше, ибо свету нужно некоторое время, чтобы Дойти от тела до наших глаз. Это явление с точки зрения теории относительности эквивалентно аберрации и сводится к ней при переходе к той системе отсчета, в которой рассматриваемое тело неподвижно. На основании этого простого соображения мы можем получить формулу аберрации совершенно элементарным путем, не прибегая к релятивистскому закону сложения скоростей.

Пусть наше светило движется параллельно земной поверхности справа налево (рис. 22). Когда оно прибывает в точку А, наблюдатель, находящийся точно под ним в точке С, видит его еще в точке В. Если скорость светила равна v, а промежуток времени, в течение которого оно проходит отрезок АВ, равен Δt, то

AB = Δt,
BC=cΔt,

sin α = AB/BC = v/c.

Но тогда, согласно формуле тригонометрии,

что и требовалось доказать. Заметим, что в классической кинематике эти две точки зрения не эквивалентны.

Интересен также следующий вопрос. Как известно, в классической кинематике скорости складываются по правилу параллелограмма. Мы заменили этот закон другим, более сложным. Значит ли это, что в теории относительности скорость уже не есть вектор?

Во-первых, то обстоятельство, что u ≠ u`+v (жирными буквами мы обозначаем векторы), само по себе не дает еще оснований отрицать векторную природу скорости. Из двух данных векторов третий вектор можно получить не только путем их сложения, а, например, путем векторного умножения, и вообще бесчисленным множеством способов. Ниоткуда не следует, что при перемене системы отсчета векторы и` и v обязаны именно складываться. И действительно, существует формула, выражающая и через и` и v с помощью операций векторного исчисления:

В связи с этим следует признать, что название «закон сложения скоростей» не совсем удачно; правильнее говорить, как это и делают некоторые авторы, не о сложении, а о преобразовании скорости при перемене системы отсчета.

Во-вторых, и в теории относительности можно указать случаи, когда скорости складываются по-прежнему векторно. Пусть, например, тело двигалось в течение некоторого промежутка времени Δt со скоростью u1, а затем — такой же отрезок времени со скоростью u2. Это сложное движение можно заменить движением с постоянной скоростью u = u1+ u2. Здесь скорости u1 и u2 складываются, как векторы, по правилу параллелограмма; теория относительности не вносит здесь никаких изменений.
Следует вообще заметить, что большинство «парадоксов» теории относительности связано так или иначе с изменением системы отсчета. Если рассматривать явления в одной и той же системе отсчета, то вносимые теорией относительности изменения в их закономерности далеко не столь кардинальны, как часто думают.

Отметим еще, что естественным обобщением обычных трехмерных векторов в теории относительности являются векторы четырехмерные; при перемене системы отсчета они преобразуются по формулам Лоренца. Кроме трех пространственных компонент, они имеют компоненту временную. В частности, можно рассматривать четырехмерный вектор скорости. Пространственная «часть» этого вектора, однако, не совпадает с обычной трехмерной скоростью, и вообще четырехмерная скорость по своим свойствам заметно отличается от трехмерной. В частности, сумма двух четырехмерных скоростей не будет уже, вообще говоря, скоростью.

Закон сложения скоростей в классической механике

Попробуй обратиться за помощью к преподавателям

Классическая механика использует понятие абсолютной скорости точки. Она определяется как сумма векторов относительной и переносной скоростей этой точки. Подобное равенство содержит утверждение теоремы о сложении скоростей. Принято представлять, что скорость движения определенного тела в неподвижной системе отсчета является равной векторной сумме скорости такого же физического тела относительно подвижной системе отсчета. В этих координатах находится непосредственно тело.

Рисунок 1. Классический закон сложения скоростей. Автор24 — интернет-биржа студенческих работ

Примеры закона сложения скоростей в классической механике

Рисунок 2. Пример сложения скоростей. Автор24 — интернет-биржа студенческих работ

Существует несколько основных примеров сложения скоростей, согласно установленным правилам, взятым за основу в механической физике. В качестве простейших объектов при рассмотрении физических законов может быть взят человек и любое движущееся тело в пространстве, с которым происходит прямое или косвенное взаимодействие.

Например, человек, который движется по коридору пассажирского поезда со скоростью пять километров в час, при этом состав двигается со скоростью 100 километров в час, то он относительно окружающего пространства двигается со скоростью 105 километров в час. При этом направление движения человека и транспортного средства должны совпадать. Такой же принцип действует и при движении в обратном направлении. В этом случае человек будет перемещаться относительно земной поверхности со скоростью 95 километров в час.

Если значения скорости двух объектов относительно друг друга будут совпадать, то они станут неподвижными с точки зрения движущихся объектов. При вращении скорость изучаемого объекта равна сумме скоростей движения объекта относительно движущейся поверхности другого объекта.

Принцип относительности Галилея

Ученые смогли сформулировать основные формулы для ускорений объектов. Из нее следует, что движущаяся система отсчета удаляется относительно другой без видимого ускорения. Это закономерно в тех случаях, когда ускорение тел происходит одинаково в разных системах отсчета.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Подобные рассуждения берут начало еще во времена Галилея, когда сформировался принцип относительности. Известно, что по второму закону Ньютона ускорение тел имеет принципиальное значение. От этого процесса зависит относительное положение двух тел в пространстве, скорость физических тел. Тогда все уравнения можно записать одинаковым образом в любой инерциальной системе отсчета. Это говорит о том, что классические законы механики не будут иметь зависимость от положения в инерциальной системе отсчета, как принято действовать при осуществлении исследования.

Наблюдаемое явление также не имеет зависимость от конкретного выбора системы отсчета. Подобные рамки в настоящее время рассматриваются как принцип относительности Галилея. Он вступает в некоторые противоречия с иными догмами физиков-теоретиков. В частности, теория относительности Альберта Эйнштейна предполагает иные условия действия.

Принцип относительности Галилея базируется на нескольких основных понятиях:

  • в двух замкнутых пространствах, которые движутся прямолинейно и равномерно относительно друг друга, результат внешнего воздействия всегда будет иметь одинаковое значение;
  • подобный результат будет действителен только для любого механического действия.

В историческом контексте изучения основ классической механики, подобная трактовка физических явлений сформировалась во многом, как результат интуитивного мышления Галилея, что подтвердилось в научных трудах Ньютона, когда тот представил свою концепцию классической механики. Однако подобные требования по Галилею могут накладывать на структуру механики некоторые ограничения. Это влияет на ее возможные формулировки, оформление и развитие.

Закон движения центра масс и закон сохранения импульса

Рисунок 3. Закон сохранения импульса. Автор24 — интернет-биржа студенческих работ

Одной из общих теорем в динамике стала теорема центра инерции. Ее также называют теоремой о движении центра масс системы. Подобный закон можно вывести из общих законов Ньютона. Согласно ему, ускорение центра масс в динамической системе не является прямым следствием внутренних сил, которые действуют на тела всей системы. Оно способно связать процесс ускорения с внешними силами, которые действуют на такую систему.

Рисунок 4. Закон движения центра масс. Автор24 — интернет-биржа студенческих работ

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

В качестве объектов, о которых идет речь в теореме, выступают:

  • импульс материальной точки;
  • система тел.
  • Эти объекты можно описать как физическую векторную величину. Она является необходимой мерой воздействия силы, при этом полностью зависит от времени действия силы.

    При рассмотрении закона сохранения количества движения утверждается, что векторная сумма импульсов всех тел система полностью представляется как постоянная величина. При этом векторная сумма внешних сил, которые действуют на всю систему, должна быть равна нулю.

    При определении скорости в классической механике также используют динамику вращательного движения твердого тела и момент импульса. Момент импульса имеет все характерные признаки количества вращательного движения. Исследователи используют это понятие как величину, которая зависит от количества вращающейся массы, а также как она распределена по поверхности относительно оси вращения. При этом имеет значение скорости вращения.

    Вращение также можно понимать не только с точки зрения классического представления вращения тела вокруг оси. При прямолинейном движении тела мимо некой неизвестной воображаемой точки, которая не лежит на линии движения, тело также может обладать моментом импульса. При описании вращательного движения момента импульса играет самую существенную роль. Это очень важно при постановке и решении разнообразных задач, связанных с механикой в классическом понимании.

    В классической механике закон сохранения импульса является следствием ньютоновской механики. Он наглядно показывает, что при движении в пустом пространстве импульс сохраняется во времени. Если существует взаимодействие, то скорость его изменения определяется суммой приложенных сил.

    Правило сложения скоростей

    При рассмотрении сложного движения (то есть когда точка или тело движутся в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта.

    Содержание

    Классическая механика

    Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы.

    1. Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, с которой её переносит пластинка за счёт своего вращения.
    2. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 — 5 = 45 километров в час, когда он идёт в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55 — 50 = 5 километров в час.
    3. Если волны движутся относительно берега со скоростью 30 километров в час, а корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30 — 30 = 0 километров в час, то есть они становятся неподвижными.

    Релятивистская механика

    В XIX веке классическая механика столкнулась с проблемой распространение этого правила сложения скоростей на оптические (электромагнитные) процессы. По существу произошёл конфликт между двумя идеями классической механики, перенесёнными в новую область электромагнитных процессов.

    Например, если рассмотреть пример с волнами на поверхности воды из предыдущего раздела и попробовать обобщить на электромагнитные волны, то получится противоречие с наблюдениями (см., например, опыт Майкельсона).

    Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущиеся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, то есть сможем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками — разница между их координатами в одной инерциальной системе осчёта — всегда равно их расстоянию в другой инерциальной системе.

    Вторая идея — принцип относительности. Находясь на корабле, движущимся равномерно и прямолинейно, нельзя обнаружить его движение какими-то внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое электродинамическими эффектами? Интуиция (довольно явным образом связанная с классическим принципом относительности) говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определённой скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантна относительно галлилеевых преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики — правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми.

    Теория относительности даёт ответ на этот вопрос. Она расширяет понятие принципа относительности, распространяя его и на оптические процессы. Правило сложение скоростей при этом не отменяется совсем, а лишь уточняется для больших скоростей с помощью преобразования Лоренца:

    Можно заметить, что в случае, когда , преобразования Лоренца переходят в преобразования Галилея. То же самое происходит в случае, когда . Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Последнее объясняет, каким образом сочетаются эти две теории — первая является уточнением второй.

    Литература

    • Б. Г. Кузнецов Эйнштейн. Жизнь, смерть, бессмертие. — М .: Наука, 1972.
    • Четаев Н. Г. Теоретическая механика. — М .: Наука, 1987.
    • Wikimedia Foundation . 2010 .

      Смотреть что такое «Правило сложения скоростей» в других словарях:

      Сложение скоростей — При рассмотрении сложного движения (то есть когда точка или тело движется в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта. Содержание 1 Классическая механика 1.1 Примеры … Википедия

      Параллелограмм скоростей — геометрическое построение, выражающее закон сложения скоростей. Правило П. с. состоит в том, что при сложном движении (см. Относительное движение) абсолютная скорость точки представляется как диагональ параллелограмма, построенного на… … Большая советская энциклопедия

      Специальная теория относительности — Почтовая марка с формулой E = mc2, посвящённая Альберту Эйнштейну, одному из создателей СТО. Специальная теор … Википедия

      ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ — физическая теория, рассматривающая пространственно временные закономерности, справедливые для любых физ. процессов. Универсальность пространственно временных св в, рассматриваемых О. т., позволяет говорить о них просто как о .св вах пространства… … Физическая энциклопедия

      Механика — [от греч. mechanike (téchne) наука о машинах, искусство построения машин], наука о механическом движении материальных тел и происходящих при этом взаимодействиях между телами. Под механическим движением понимают изменение с течением… … Большая советская энциклопедия

      ВЕКТОР — В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера

      Зоммерфельд, Арнольд — Арнольд Зоммерфельд Arnold Sommerfeld Зоммерфельд в … Википедия

      Пуанкаре, Анри — Анри Пуанкаре Henri Poincaré Дата рождения: 29 апреля 1854(1854 04 29) Место рождения: Нанси … Википедия

      ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ — физическая теория, рассматривающая пространственно временные свойства физич. процессов. Эти свойства являются общими для всех физич. процессов, поэтому их часто наз. просто свойствами пространства времени. Свойства пространства времени зависят от … Математическая энциклопедия

      закон — а; м. 1. Нормативный акт, постановление высшего органа государственной власти, принятый в установленном порядке и имеющий юридическую силу. Кодекс законов о труде. З. о социальном обеспечении. З. о воинской обязанности. З. о рынке ценных бумаг.… … Энциклопедический словарь

      Основная статья: Теорема о сложении скоростей

      В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:

      Данное равенство представляет собой содержание утверждения теоремы о сложении скоростей.

      Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчёта, в которой в данный момент времени находится тело.

      1. Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, которую имеет точка пластинки под мухой относительно земли (то есть с которой её переносит пластинка за счёт своего вращения).

      2. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 — 5 = 45 километров в час, когда он идёт в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55 — 50 = 5 километров в час.

      3. Если волны движутся относительно берега со скоростью 30 километров в час, и корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30 — 30 = 0 километров в час, то есть относительно корабля они становятся неподвижными.

      Из формулы для ускорений следует, что если движущаяся система отсчета движется относительно первой без ускорения, то есть , то ускорение тела относительно обеих систем отсчета одинаково.

      Поскольку в Ньютоновской динамике из кинематических величин именно ускорение играет роль (см. второй закон Ньютона), то, если довольно естественно предположить, что силы зависят лишь от относительного положения и скоростей физических тел (а не их положения относительно абстрактного начала отсчета), окажется, что все уравнения механики запишутся одинаково в любой инерциальной системе отсчета — иначе говоря, законы механики не зависят от того, в какой из инерциальных систем отсчета мы их исследуем, не зависят от выбора в качестве рабочей какой-либо конкретной из инерциальных систем отсчета.

      Также — поэтому — не зависит от такого выбора системы отсчета наблюдаемое движение тел (учитывая, конечно, начальные скорости). Это утверждение известно как принцип относительности Галилея, в отличие от Принципа относительности Эйнштейна

      Иным образом этот принцип формулируется (следуя Галилею) так:

      Если в двух замкнутых лабораториях, одна из которых равномерно прямолинейно (и поступательно) движется относительно другой, провести одинаковый механический эксперимент, результат будет одинаковым.

      Требование (постулат) принципа относительности вместе с преобразованиями Галилея, представляющимися достаточно интуитивно очевидными, во многом следует форма и структура ньютоновской механики (и исторически также они оказали существенное влияние на ее формулировку). Говоря же несколько более формально, они накладывают на структуру механики ограничения, достаточно существенно влияющие на ее возможные формулировки, исторически весьма сильно способствовавшие ее оформлению.

      Центра масс системы материальных точек

      Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом:

      где — радиус-вектор центра масс, — радиус-вектор i-й точки системы, — масса i-й точки.

      Для случая непрерывного распределения масс:

      где — суммарная масса системы, — объём, — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

      Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами , то радиус-вектор центра масс такой системы связан с радиус-векторами центров масс тел соотношением:

      Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

      Закон движения центра масс

      Теорема о движении центра масс (центра инерции) системы — одна из общих теорем динамики, является следствием законов Ньютона. Утверждает, что ускорение центра масс механической системы не зависит от внутренних сил, действующих на тела системы, и связывает это ускорение с внешними силами, действующими на систему.

      Объектами, о которых идёт речь в теореме, могут, в частности, являться следующие :

      Импульс материальной точки и системы тел — это физическая векторная величина, которая является мерой действия силы, и зависит от времени действия силы.

      Закон сохранения импульса (доказательство)

      Закон сохранения импульса (Закон сохранения количества движения) утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.

      В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

      Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной из фундаментальных симметрий, — однородностью пространства.

      Согласно второму закону Ньютона для системы из N частиц:

      где импульс системы

      а — равнодействующая всех сил, действующих на частицы системы

      Здесь — равнодействующая сил, действующим на n-ю частицу со стороны m-ой, а — равнодействующая всех внешних сил, действующих k-ю частицу. Согласно третьему закону Ньютона, силы вида и будут равны по абсолютному значению и противоположны по направлению, то есть . Поэтому вторая сумма в правой части выражения (1) будет равна нулю, и получаем, что производная импульса системы по времени равна векторной сумме всех внешних сил, действующих на систему:

      Внутренние силы исключаются третьим законом Ньютона.

      Для систем из N частиц, в которых сумма всех внешних сил равна нулю

      или для систем, на частицы которых не действуют внешние силы (для всех k от 1 до n), имеем

      Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:

      (постоянный вектор).

      То есть суммарный импульс системы из N частиц, где N любое целое число, есть величина постоянная. Для N = 1 получаем выражение для одной частицы.

      Закон сохранения импульса выполняется не только для систем, на которые не действуют внешние силы, но и для систем, сумма всех внешних сил равна нулю. Равенство нулю всех внешних сил достаточно, но не необходимо для выполнения закона сохранения импульса.

      Если проекция суммы внешних сил на какую-либо направление или координатную ось равна нулю, то в этом случае говорят о законе сохранения проекции импульса на данное направление или координатную ось.

      Динамика вращательного движения твердого тела

      Основной закон динамики МАТЕРИАЛЬНОЙ ТОЧКИ при вращательном движении можно сформулировать следующим образом:

      «Произведение момента инерции на угловое ускорение равно результирующему моменту сил, действующих на материальную точку: «M = I·e.

      Основной закон динамики вращательного движения ТВЕРДОГО ТЕЛА относительно закрепленной точки можно сформулировать следующим образом:

      «Произведение момента инерции тела на его угловое ускорение равно суммарному моменту внешних сил, действующих на тело. Моменты сил и инерции берутся относительно оси (z), вокруг которой происходит вращение: «

      Основные понятия: момент силы, момент инерции, момент импульса

      Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) — векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы — по определению) на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

      Понятия «вращающий» и «крутящий» моменты в общем случае не тождественны, так как в технике понятие «вращающий» момент рассматривается как внешнее усилие, прикладываемое к объекту, а «крутящий» — внутреннее усилие, возникающее в объекте под действием приложенных нагрузок (этим понятием оперируют в сопротивлении материалов).

      Момент инерции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

      Единица измерения в Международной системе единиц (СИ): кг·м².

      Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массывращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

      Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения. Однако крайне важен и для гораздо более широкого класса задач (особенно — если в задаче есть центральная или осевая симметрия, но не только в этих случаях).

      Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.

      Момент импульса замкнутой системы сохраняется.

      Популярное:

      • Как расторгнуть страховку Как расторгнуть договор ОСАГО и вернуть деньги Современная жизнь непредсказуема и может возникнуть такая ситуация, когда нужно аннулировать договор по ОСАГО, и компенсировать часть уплаченных за страховку денег. По закону гражданин, […]
      • Кто правил в 911 Этот день в истории: 911 год — заключен русско-византийский договор 2 сентября 911 года в Константинополе между Киевской Русью и Византийской империей был заключен международный договор, который регулировал русско-византийские […]
      • Малый вводный септаккорд с разрешением Малый вводный септаккорд с разрешением См. также решения задач Абызова 380 №№1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Бригадный 313 №№1, 2, 3, 4, 5, 6, 7, 8, 9 Септаккорд VII ступени и его обращения Определение. Виды. Вводными называются […]
      • Заявление на отцовство в загсе Государственная регистрация установления отцовства Государственная регистрация установления отцовства производится в соответствии с главой VI Федерального Закона от 15.11.1997 № 143-ФЗ "Об актах гражданского состояния". Основания для […]
      • Изменения в таможенных правилах База данных: ТН ВЭД ЕАЭС. Коды ТН ВЭД, ставки пошлин, особенности оформления Обратите внимание! В опубликованном ТНВЭД отражена ситуация на текущий момент (ставки пошлин, особенности процедуры таможенного оформления и пр.). При изменения […]
      • Гражданский кодекс наследство по завещанию Гражданский кодекс наследство по завещанию Автострахование Жилищные споры Земельные споры Административное право Участие в долевом строительстве Семейные споры Гражданское право, ГК РФ Защита прав потребителей […]
      • Налог на снт 2018 Налог на снт 2018 МОСКВА И МОСКОВСКАЯ ОБЛАСТЬ: САНКТ-ПЕТЕРБУРГ И ЛЕНИГРАДСКАЯ ОБЛАСТЬ: РЕГИОНЫ, ФЕДЕРАЛЬНЫЙ НОМЕР: Какие налоги платит СНТ в 2018 году? Садовое некоммерческое товарищество (СНТ) - это специальное некоммерческое […]
      • Рисунки разводами Красивые разводы на ногтях Для начала нужно приготовить ноготь и палец! Покрасьте ноготь белым лаком. После обклейте палец тонким лейкопластырем (можно взять лейкопластырь на бумажной основе, так как он легко снимется после). Теперь […]